手機警示個案即將發病?憂鬱症數位表徵的大革命
醫療A重度憂鬱症(MDD)是當前全球公共衛生的重大挑戰,影響全球約十分之一的人口。然而,臨床實務中對於憂鬱症的診斷與療效評估,長期以來受限於診斷系統的異質性(Heterogeneity)。傳統診斷依賴臨床訪談與患者自我報告,這種「斷點式」且具主觀偏差的評估方式,難以捕捉患者在日常生活中動態變化的病程。由身心介面研究中心團隊鄭思維醫師擔任第一作者,我們2026年2月在 Psychiatry and Clinical Neurosciences 的這篇綜論中,試圖透過「數位表徵(Digital Phenotyping, DP)」與「人工智慧(AI)」兩大工具,重新構想憂鬱症分類與治療的可能樣貌,未來精神醫學可望迎來從經驗驅動轉向數據驅動的典範轉移。
現行診斷系統主要依賴看診時斷點式評估與自陳量表,不僅易受回溯偏誤影響,也難以捕捉症狀在真實世界中持續變化的動態軌跡。隨著可穿戴裝置與智慧手機普及,現代醫療首次有機會在自然情境中,持續性、系統性蒐集大量生理與行為訊號,例如活動量、睡眠結構、心率變異度(HRV)、脈搏呼吸速率等資訊等,此外,AI 語音分析與自然語言處理(NLP)技術的進步,使我們能從對話的語調、語法與語速中擷取微小的認知與情緒訊號,這是傳統訪談難以量化的。這些經由隨身裝置收集再加上主觀情緒與認知狀態的資料組合,被稱為「數位表徵 (DP)」。相較於診間內片面的資訊,這種數位數據能提供「高解析度」且「連續性」的觀察,大幅提升了診斷的精準度。
當然,目前這方面的應用仍有許多困難等待突破。技術上,AI 模型必須經過嚴謹的前瞻驗證與外部驗證,避免過度擬合;臨床上,數位監測的依從性與病人接受度是關鍵瓶頸;倫理與監管方面,資料隱私、AI 偏誤與缺乏明確 FDA 認證路徑都是現階段必須正視的議題;數位表型的穩定性、不同廠牌裝置間的數據一致性,以及臨床應用的標準化,皆是目前待解決的技術問題。更重要的是,文章一再提醒:即使在最精緻的數位表徵框架下,主觀經驗與敘事性的臨床訪談仍然不可被取代。
在結語中,我們提出 TACF(Transdisciplinary AI‑Optimized Co‑Development Framework),呼籲精神科醫師、工程師、資料科學家與病人倡議者共同設計數位介入,確保技術創新與臨床實務與倫理規範同步前進 。未來將醫療重心從「症狀出現後的介入」推向「前瞻性的早期偵測和預警」,並為每位患者提供高度個人化的治療藍圖。隨著技術的成熟與倫理規範的完善,這套數據驅動的架構將帶領精神醫學進入真正精準、即時且人性化的新紀元。然而,心理健康數據涉及個人核心隱私,如何在數據共享以優化演算法與個人資訊安全之間取得平衡,是推廣數位醫療的成敗關鍵。
一、 研究背景:憂鬱症診斷的異質性與挑戰
- 現狀缺口: 重度憂鬱症(MDD)具備高度異質性,現行 DSM-5 等診斷系統過於依賴臨床醫師的主觀評估與患者的自我報告,缺乏客觀生物指標。RDoC 嘗試導入客觀指標,但臨床落地仍困難。
- 技術轉型: 隨著穿戴式裝置與智慧型手機普及,發展出「數位表型(Digital Phenotyping)」技術,能連續、即時且客觀地收集行為與生理數據。
二、 數位表型的定義與範疇
- 被動數據: 指的是無須使用者介入,由感測器自動收集的資料,如 GPS 定位(空間活動)、加速規(運動量)、通訊紀錄(社交活動)。
- 主動數據: 患者主動回報的資訊,如數位化的情緒評分、認知測試。
- 穿戴裝置與生態瞬時評估(EMA)可連續蒐集真實世界資料,DP 反映「生物脆弱性 × 環境互動」的動態結果
三、 人工智慧(AI)在憂鬱症的應用
- 診斷與分類: 透過機器學習分析語音、表情、打字頻率及睡眠模式,偵測憂鬱症的細微特徵,輔助進行更精確的臨床次分類。
- 治療反應預測: 利用數據模型預測特定患者對抗憂鬱劑或心理治療的反應,降低藥物試錯(trial and error)的成本。
- 活動量下降、步態改變 → 精神動作遲滯;睡眠節律異常 → 前驅症狀與復發預測;心率變異度(HRV) → 壓力調節能力;皮膚溫度、光照暴露、電皮膚反應 → 情緒與自律神經狀態;可透過 Apple Watch、Fitbit、Garmin 等商用裝置取得(見 Table 1)
四、 數位表型的臨床價值:從「單點快照」到「連續錄影」
- 復發預警: 系統能透過行為模式的改變(如社交孤立、睡眠混亂),在臨床復發前發出警報,實現預防性介入。
- 精準醫療: 結合生物標記與數位表型,為患者量身打造「數位處方」或介入措施。
- 機器學習整合多模態資料(活動、睡眠、語音、HRV);CNN:處理語音頻譜等空間資料;RNN/LSTM:分析長期時間序列變化;混合 CNN-LSTM 架構提升預測準確度;AI 可從長期軌跡中辨識個人化疾病模式,超越傳統族群平均
五、 未來方向與倫理規範
- 技術整合: 需整合生理(如心率、皮質醇)與數位行為數據,建構更全面的多模態模型。
- 模型層面:外部驗證不足;需可解釋 AI(XAI)增加臨床信任。
- 病人層面:長期配戴依從性低;數位落差與隱私疑慮。
- 精神醫學核心問題:DP 無法取代病人主觀敘事;自殺意念內容、罪惡感、文化意義仍需臨床訪談。
- 倫理與隱私: 需符合 GDPR 等國際標準,去中心化技術(區塊鏈、聯邦學習)可提升安全並保留患者對資料存取的控制權,但也面臨計算負荷與技術門檻問題,以保護高度敏感的個人心理健康資料。
- Transdisciplinary AI-Optimized Co-Development Framework:醫師定義臨床目標;病人參與設計與同意流程;工程師建立安全資料流程;資料科學家開發可解釋 AI → 建立真正「臨床可用」的數位精神醫學
















